11 research outputs found

    Improving QPF by blending techniques at the Meteorological Service of Catalonia

    Get PDF
    The current operational very short-term and short-term quantitative precipitation forecast (QPF) at the Meteorological Service of Catalonia (SMC) is made by three different methodologies: Advection of the radar reflectivity field (ADV), Identification, tracking and forecasting of convective structures (CST) and numerical weather prediction (NWP) models using observational data assimilation (radar, satellite, etc.). These precipitation forecasts have different characteristics, lead time and spatial resolutions. The objective of this study is to combine these methods in order to obtain a single and optimized QPF at each lead time. This combination (blending) of the radar forecast (ADV and CST) and precipitation forecast from NWP model is carried out by means of different methodologies according to the prediction horizon. Firstly, in order to take advantage of the rainfall location and intensity from radar observations, a phase correction technique is applied to the NWP output to derive an additional corrected forecast (MCO). To select the best precipitation estimation in the first and second hour (t+1 h and t+2 h), the information from radar advection (ADV) and the corrected outputs from the model (MCO) are mixed by using different weights, which vary dynamically, according to indexes that quantify the quality of these predictions. This procedure has the ability to integrate the skill of rainfall location and patterns that are given by the advection of radar reflectivity field with the capacity of generating new precipitation areas from the NWP models. From the third hour (t+3 h), as radar-based forecasting has generally low skills, only the quantitative precipitation forecast from model is used. This blending of different sources of prediction is verified for different types of episodes (convective, moderately convective and stratiform) to obtain a robust methodology for implementing it in an operational and dynamic wa

    Stroke Based Painterly Rendering

    Get PDF
    International audienceMany traditional art forms are produced by an artist sequentially placing a set of marks, such as brush strokes, on a canvas. Stroke based Rendering (SBR) is inspired by this process, and underpins many early and contemporary Artistic Stylization algorithms. This Chapter outlines the origins of SBR, and describes key algorithms for placement of brush strokes to create painterly renderings from source images. The chapter explores both local greedy, and global optimization based approaches to stroke placement. The issue of creative control in SBR is also briefly discussed

    Intelligent Interfaces to Empower People with Disabilities

    Full text link
    Severe motion impairments can result from non-progressive disorders, such as cerebral palsy, or degenerative neurological diseases, such as Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), or muscular dystrophy (MD). They can be due to traumatic brain injuries, for example, due to a traffic accident, or to brainste

    Empathic Painting: Interactive stylization using observed emotional state

    No full text
    We present the "empathie painting" - an interactive painterly rendering whose appearance adapts in real time to reflect the perceived emotional state of the viewer. The empathie painting is an experiment into the feasibility of using high level control parameters (namely, emotional state) to replace the plethora of low-level constraints users must typically set to affect the output of artistic rendering algorithms. We describe a suite of Computer Vision algorithms capable of recognising users' facial expressions through the detection of facial action units derived from the FACS scheme. Action units are mapped to vectors within a continuous 2D space representing emotional state, from which we in turn derive a continuous mapping to the style parameters of a simple but fast segmentation-based painterly rendering algorithm. The result is a digital canvas capable of smoothly varying its painterly style at approximately 4 frames per second, providing a novel user interactive experience using only commodity hardware
    corecore